Smit Slikkerveer
Wereldtentoonstelling Brussel 1910
Transformatoren
Smit Slikkerveer 1912
Smit Draad
Draadwals (1926)
Smit Ovens
Vervoer van een grote oven per slede (Groenestraat Nijmegen 1936)
Thomas Rosskopf
Excursieleider KIVI bij Smit Slikkerveer (1911)
Smit Transformatoren
Montage in de bak van een 4000 kVA transformator (Amsterdam 1916)
Smit Draad (1921-1927)
Kijkje in de Draadfabriek
Smit Slikkerveer
Generator 1500 kW (1913)
Smit Transformatoren (1916)
4000 kVA transformator
Professor Nolen (1938)
Beproeving oude gramme dynamo bij TU Delft
Hoogte Kadijk
Transformatoren (1936)
Thomas Rosskopf (1880-1953)
De oprichter van Smit Transformatoren, Draad, Weld en Ovens
Smit Transformatoren
Spoelenmontage 1921
Willem Benjamin Smit (1860-1950)
Elektriciteitspionier en grondlegger van de Smit bedrijven in Nederland
Smit Gas Generatoren
1965-1969
Het vervoer van transformatoren d.m.v. paardentractie (Smit Transformatoren 1913-1915)
Dit duurde weken...
Smit Elektroden
Laselektroden afdeling 1935
Smit Slikkerveer
Elektrische centrale Tandjong Priok (1895)
Smit Draad
Vrouw aan de omspinmachine (1926)

Laatste updates

Royal Smit betreedt de Duitse markt voor grote transformatoren

Inleiding

Smit was de grootste leverancier van transformatoren in Nederland, maar de omvang van die markt is nu eenmaal beperkt. Smit wilde zich nog meer gaan richten op de export en de Duitse markt ligt letterlijk naast de deur. Elke markt heeft zijn eigen specificaties, normen en manier van samenwerken. Een stap over de grens is dus niet zo simpel, alhoewel er wel eens een transformator gemaakt was ( zie fig 1 t/m fig 3 en literatuur 5 ).

Je moet bewijzen dat je de kennis en kunde hebt om grote transformatoren te bouwen. De klant moet ook het vertrouwen hebben dat je dat kunt volgens zijn specificatie. Dat geldt des te meer naarmate de spanningen groter zijn dan 220 kV en de vermogens groter dan 100 MVA.
Er deed zich een goede kans voor om de stap te vergemakkelijken naar de Duitse markt. Lepper, een Duitse transformatorfabrikant met meerdere fabrieken, werd in 1969 overgenomen door ASEA uit Zweden. Een van deze fabrieken ging nu samenwerken met Smit. Deze fabriek in Brilon maakte ook nettransformatoren zoals in de transformatorhuisjes, maar ook grotere transformatoren tot een vermogen van zo’n 40 MVA en een spanning van 110 kV. Er ontstond een levendige uitwisseling
van ideeën en ervaringen, tot beider voordeel.

Lepper-Dominit werd vertegenwoordiger van Smit op de Duitse markt. De specifieke technische kennis en de commerciële connecties van Lepper-Dominit kwamen daarbij goed van pas. De samenwerking eindigde midden 1972. Smit ging zelfstandig verder met een “Vertriebsbüro” in Brilon. Franz Josef Bange werd vertegenwoordiger van Smit op de Duitse markt. In de elektriciteitswereld kende hij iedereen, maar iedereen kende ook Franz Josef. Hij zorgde er voor dat alle correspondentie in correct Duits was geschreven en hij was in alles heel punctueel. Franz Josef was vooral een markante persoonlijkheid, die af en toe gezellig een pijp opstak.

2 De samenwerking op het gebied van kleine transformatoren

De transformatoren voor de Duitse markt moeten aan strenge eisen voldoen. Het geluidsniveau van de transformator moest véél lager zijn dan in Nederland. Het meeste geluid wordt gemaakt door de kern en de constructie van de kern was dus een belangrijk punt van aandacht. Als er mechanische drukspanningen in het blik ontstaan, gaat het blik harder trillen en maakt de kern dus meer geluid.
Een kern wordt gestapeld met kernblik. In de kernblik ponste men gaten en daar stak men een bout door. De kernblikken werden dus bij elkaar gehouden door een constructie met veel bouten. De mechanische spanningen waren ter plaatse van de bout heel groot. Smit maakte de kernpoot al zonder bouten, maar met bandages. De jukken werden nog gebout. Lepper had de volgende stap al gemaakt: Kleine kernen werden in zijn geheel gelakt, zodat de blikken aan elkaar plakten. Bandages zijn dan ook niet meer nodig. Smit leerde van Lepper hoe je dat moest doen.

Lees meer

Transformatoren voor Strokarton fabriek "De Halm" in Hoogkerk (1915)

Strokartonfabriek de Halm in HoogkerkOnlangs kwam ik in het bezit van een groot aantal digitale scans van het Heemaf archief van Historisch Centrum Overijssel te Zwolle. De foto's en glasnegatieven zijn zeer gedetailleerd beschreven door medewerkers van het archief. Een database maakt het mogelijk dat ik zeer snel op trefwoord kan zoeken in een archief met 26000 glasnegatieven en 20000 foto's van de Heemaf collectie. Binnenkort meer foto's uit deze collectie.

Uit deze collectie komt onderstaande foto van 01 februari 1915. Links zien we een laagspanningsrek en achter de muur 2 stuks 1000 kVA transformatoren fabricaat Willem Smit & Co's Transformatorenfabriek. Jammergenoeg is dit de enige foto en zien we de transformatoren niet helemaal in beeld. De transformator werd geleverd aan Strokartonfabriek "De Halm" uit Hoogkerk die in 1913 werd opgericht. Dit is één van de oudste foto's van een transformator van Smit die ik in deze kwaliteit gezien heb. De foto is gedigitaliseerd van een glasnegatief in hoge resolutie en haarscherp.

Transformator in de machinekamer van de Strokartonfabriek (1915) 

Laagspanningsverdeelrek gevoed door tweetal 1000 kVA; 10 kV/500 V transformatoren van Smit Nijmegen (09-02-1915) Bron: Historische Centrum Overijssel.

Erik de Vries: "Een mooie strakke installatie. Ik denk dat deze foto genomen is toen ze nog bezig waren met het aansluiten van de uitgaande 500 V kabels. Typisch ook nog de oude Smit kast met hoekvinnen. Jammer dat we daar weinig van kunnen zien. Wat een vermogen voor een strokartonfabriek ! maar dit was ook wel een erg grote en beroemde, opgericht in 1913. Deze foto moet dus van de eerste uitbreiding geweest zijn . Rond die tijd werden er 10 kV verbindingen in Groningen gemaakt. Dit zal wellicht de eerste HS / LS installatie van die fabriek geweest zijn."

Strokartonfabriek

Strokartonfabriek "De Halm" in Hoogkerk (1931)

Hoogstwaarschijnlijk is dit dezelfde transformator, vervoert door de FA Frederiks uit Nijmegen met paard en wagen (eind 1914). 

Strokarton
Strokarton wordt gemaakt van het restproduct stro en het was 100 jaar de belangrijkste manier om karton te produceren voor de verpakking van o.a. zeep, schoenen en chocolade. Aan het begin van de twintigste eeuw werden door Nederland enorme hoeveelheden strokarton geëxporteerd. In Groningen had men toen een monopolie positie op dit gebied. Tegenwoordig wordt strokarton niet meer gemaakt van stro maar van oud papier. Strokartonfabriek "De Halm" in Hoogkerk heet tegenwoordig Smurfit Kappa en bestaat in 2013 dus 100 jaar, net als Smit Transformatoren die in hetzelfde jaar ook zijn 100 jarig jubileum zal vieren. 

Lees meer

Smit maakt de sprong van 220 kV --> 380 kV

Inleiding

Het koppelen van elektriciteitscentrales werd voor de tweede wereldoorlog al veel gedaan. In geval van een storing kon men elkaar steunen, zodat de elektrische energie voorziening aan de gebruikers geen hinder ondervond. De plannen om grote stedelijke centrales op 150 kV niveau te koppelen kwamen rond 1930 al op. Dit 150 kV koppelnet begon in de 50-tiger jaren het karakter te krijgen van een transportnet. Het verbruik van elektrische energie bleef maar stijgen en een volgende stap was dus nodig.
Het hing al enige tijd in de lucht. De S.E.P. ( de voorloper van TenneT ) wil een 380 kV net bouwen. Dit 380 kV net moet de bestaande 150 kV en 220 kV netten koppelen, maar ook de elektriciteits centrales die verspreid staan over het land. Dit 380 kV net bestrijkt niet alleen heel Nederland, maar maakt ook koppelingen mogelijk met België en Duitsland.
Smit ging zich al in een vroeg stadium voorbereiden, want dit is een grote sprong in transformatortechniek, namelijk van 220 kV naar 380 kV. Smit was al op volle snelheid bezig toen begin 1966 de opdracht binnenkwam. Wat moet je allemaal niet technisch onderzoeken om deze sprong mogelijk te maken en hoe verliep die sprong. Wat leverde al die technische onderzoeken nog meer op, want de spin off van zo’n project is vaak heel groot. Smit is na dit succes gepromoveerd naar de eredivisie van de 400 kV transformatorfabrikanten en dankzij de resultaten van al dit werk draait Smit nog steeds mee in de top van deze eredivisie. Er ligt een nieuwe markt open met veel technische uitdagingen.
In een eerder verhaal van Erik de Vries is al aandacht besteed aan dit project en de rol van Smit Transformatoren hierin. (1966 start bouw landelijk koppelnet 380 kV.) Dit onderstaande verhaal kijkt vanuit een technische invalshoek.

Een één fase transformator uit 1968-JoopKuipers-HR
Een één fase transformator van Smit uit 1968, bron collectie Joop Kuipers.

Hoe doen anderen het?

Ontwikkelen begint altijd met de vraag: Hoe doen anderen het? Je maakt eerst een overzicht van ontwerpgegevens en constructiedetails uit de literatuur. Die meeste literatuur was van west Europese transformatorfabrikanten, die zo hun technische kunde lieten zien aan potentiële klanten. In die tijd waren en in Europa nog veel fabrikanten van grote transformatoren. Het aantal fabrikanten in Europa is tegenwoordig veel kleiner door de vele fusies en reorganisaties. Het merendeel van de ontwerpen in de literatuur waren eenfase transformatoren en de regeling van de spanning werd meestal gedaan met een aparte regeltransformator. Dit onderzoek is uitgevoerd door Frank den Outer, technische specialist bij Smit. Tegenwoordig noemen we zoiets een marktonderzoek.


Wat wil de klant precies?

De opbouw van het Nederlandse elektriciteitsnet vereiste echter een totaal ander ontwerp. De afzonderlijke 150 kV netten zijn indirect geaard en het 380 kV net wordt niet bij elke transformator direct geaard. Er kunnen dus hoge spanningen op de sterpunten komen bij eenfase kortsluitingen in het net. De sterpunten van de 150 kV en 380 kV wikkelingen moeten dan ook met hoge spanningen beproefd worden. Een aparte regeltransformator is, praktisch gezien, niet meer mogelijk.

Lees meer

Fritz Tauber - een verhaal over een Joods technisch tekenaar die door door de directie van Smit Transformatoren uit Kamp Westerbork werd gehaald (1942).

Fritz Tauber (1906-2004) was een legale Joodse emigrant die in 1938 vanuit Oostenrijk naar Nederland vluchtte vanwege het opkomende Nationaal Socialisme.Fritz Tauber Hij vond werk bij Smit Transformatoren (tekenaar/constructeur) en werd op 18 november 1942 opgepakt door de Nazi's en samen met zijn vrouw naar kamp Westerbork gestuurd. De directeur van Willem Smit & Co (Rosskopf) deed verwoede pogingen om hem weer vrij te krijgen middels briefcorrespondentie en steeds maar weer inpraten op de Duitse leiding. Men stelde : "Zonder Frits kunnen we geen Transformatoren maken, hij is een essentiële schakel in het proces". Uiteindelijk resulteerde dit in de vrijlating van Tauber en zijn vrouw op 21 november 1942. Enkele maanden later doken zij onder. Na 2 jaar ondergedoken gezeten te hebben in Friesland volgde op 17 April 1945 de bevrijding. Na de bevrijding ging hij weer werken bij Smit Transformatoren, het bedrijf dat zo belangrijk voor hem en zijn vrouw was geweest.

Opmerkelijk is dat er dus 2 boeken zijn uitgegeven van de belevenissen van oud medewerkers van Smit Transformatoren tijdens WO II. Het andere boek is onlangs in Nederland uitgegeven "Dansen in schuilkelders" van Johanna Wycoff-de Wilde. Mochten er nog meer oorlogsboeken zijn uitgegeven die zich afspeelden bij Smit Transformatoren dan hoor ik dat graag. 

Hieronder het verhaal van Fritz Tauber:

Vlucht uit Oostenrijk / aan de slag bij Smit  (1938)
In 1938 kwam de Oostenrijker Fritz Tauber met zijn vrouw aan in Nederland, letterlijk uit zijn huis/land verjaagd omdat hij van Joodse afkomst was. Nederland was in WO I neutraal gebleven en hij had goede hoop dat wanneer het tot een oorlog zou komen Nederland weer neutraal zou zijn. Hij dacht in Nederland veilig te zijn, maar dat bleek een illusie.

Fritz Tauber had jaren gewerkt bij Siemens Schuckert en Elin A.G. in Wenen, als constructeur/technisch tekenaar. Bij Elin hield hij zich tot 1938 bezig met de constructie van de 150 kV regelschakelaars en dat was zeer interessant voor Smit die toen nog niet zover waren. Door contacten tussen de directie van Smit en Elin kwam Rosskopf erachter dat de constructeur Fritz Tauber - die hen zo goed had geholpen met een Regeltransformator - zijn baan kwijt zou raken vanwege zijn Joodse afkomst, daarnaast werd het voor Fritz veel te gevaarlijk in Oostenrijk. Er werd een contract getekend en Fritz Tauber kreeg een werkvergunning in Nederland. Hij emigreerde zo snel hij kon met zijn vrouw naar Nederland met 25 Gulden en een passer op zak. 

Siemens Schuckert en Elin waren in die tijd technisch een voorloper op het gebied van de Regeltransformatoren en daarbij kwam zijn kennis zeer goed van pas. Er werd een huis geregeld voor de familie Tauber midden in Nijmegen.

In een bovenwoning aan de Mariënburg 70 werden zij ondergebracht. Anno 2020 zien we dat deze bovenwoning in het monumentaal pand nog steeds bestaat en gelegen is rechts naast café restaurant Toon en boven café Faber dat nog steeds huisnummer 70 heeft. De exacte locatie komen we binnenkort te weten.


Tekenkamer Smit Transformatoren 1949. Bron: Personeelsblad Smit Transformatoren. Foto: Onbekend, bedrijfsfotograaf.

Lees meer

De verliezen van de transformator

Het rendement van de transformator sept 2022

Het rendement als je energie transformeert

Een elektromotor zet elektrische energie om in mechanische energie, een elektriciteitscentrale zet thermische energie ( door verbranding van gas of kolen ) om in elektrische energie. Er zijn altijd verliezen als je energie omzet en dat druk je uit in het rendement van de omzetter. Een kolencentrale heeft maar een rendement van 40% ( zie ook Carnot rendement op Wikipedia ) maar een elektromotor wel 90%. De transmissie van een personenauto auto zet de mechanische energie met het hoge toerental van de motor om in mechanische energie met een laag toerental van de wielen, met een rendement van ca 85% tot 90%. Een transformator, zoals in een transformatorhuisje op de hoek van de straat, zet de elektrische energie bij een hoogspanning van 10.000 Volt om in elektrische energie met lage spanning van 380 Volt. Het rendement is daarbij 99% tot 99,5%.
Het vergelijken van rendementen is niet zonder risico, want je moet wel goed afspreken wat je wel of niet meeneemt. Het rendement van een elektrische auto is veel hoger dan van een benzineauto, maar het rendement van de elektriciteitsopwekking moet je dan wel meenemen in de vergelijking. Je moet altijd de hele keten bekijken.

Het verbeteren van het rendement van een transformator betekent dat je de het totale verlies moet verminderen. Je dient de nodige kennis van het product te hebben om alle stukken verlies te bepalen, wat bij elkaar opgeteld het totale verlies geeft. Het verlies van een transformator bestaat globaal uit drie stukken.

  1. Het verlies in de kern van de transformator, wat ook wel het nullastverlies genoemd wordt. Deze verliezen heb je als er spanning op de transformator staat, maar hij nog geen energie omzet. Je kunt dat vergelijken met een auto die stil staat in de file. De motor draait en je verbrand benzine en er is dus verlies, maar het resulteert niet in mechanische energie want je rijdt geen meter.
  2. Het verlies in het koper, terwijl er een stroom door heen loopt. Je berekend dat via de wet van Ohm. Je gaat er daarbij van uit dat het een gelijkstroom is, zoals de stroom uit een accu. Men noemt dit ook wel het gelijkstroomverlies.
  3. Het verlies in allerlei metalen delen in de transformator, vanwege het wisselend magnetisch veld door de wisselstromen in de wikkelingen. Als een metaal in een wisselend magnetisch veld zit, dan lopen er stromen binnen in het metaal. Men noemt dat wervelstromen en dat resulteert in wervelstroomverliezen. Men noemt het ook wel wisselstroomverlies.Deze verliezen kennen we van het inductie koken. De bodem van de pan wordt warm door de wervelstromen die er daar in rond lopen. Het gelijkstroomverlies en het wisselstroomverlies opgeteld noemt men ook wel het lastverlies of kortsluitverlies. De laatste naam is de technische term en gerelateerd aan de meetmethode.

De nullast verliezen in de transformator

Deze verliezen heb je altijd als er spanning op de transformator staat en de transformator niet belast wordt. Er loopt een zeer kleine nullast stroom en de transformator heeft nul last. Deze verliezen zitten in het ijzer van de kern. Je kunt beter spreken van kernblik of “electrical steel”, want het is eigenlijk een ijzerlegering met een bepaalde functionaliteit. De verliezen worden veroorzaakt door het wisselen van het magnetische veld in het kernblik met een frequentie van 50 Hz.
Er is altijd veel onderzoek gedaan om het verlies van het kernblik te verlagen. Dit verlies wordt uitgedrukt in Watt per kg bij een referentie magnetische belasting ( een inductie van 1 T bij 50 Hz zie ook fig 1 ). Verlies kost geld en de warmte die daarbij ontstaat moet je ook nog afvoeren door te koelen. Het elektriciteitsbedrijf wil vooral zo laag mogelijke verliezen bij een nieuwe transformator. Die rekent uit wat 1 kW nullast verlies kost als de transformator altijd onder spanning staat gedurende zijn hele leven.

Lees meer

De dwarsregel transformator; de “verkeersregelaar” voor het elektriciteitsnet

DwarsregelaarDe energietransitie is de overstap van fossiele energie naar duurzame energie zoals zon, wind en water. Je hoort uitspraken zoals “vandaag is wel 80% van de elektriciteit duurzaam opgewekt”. Die elektriciteit wordt “ergens” opgewekt maar de gebruiker is “ergens anders ver weg“. De elektrische energie dient op elk gewenst moment bij elke gebruiker te komen, en de vraag is dan ook: hoe regel ik dan het transport. Denk eens aan het volgende realistische scenario: Het is bewolkt en windstil in Nederland, maar het waait flink in de Oostzee bij Duitsland. Het elektriciteitstransport over al die parallelle hoogspanningslijnen mag nergens leiden tot een overbelasting.
De eerste stap naar een oplossing is het net nog verder verzwaren. Als er nu ergens een 30 MVA transformator moet worden vervangen, dan heeft de nieuwe transformator een vermogen van 80 of 100 MVA. Staat er al een 500 MVA koppelnettransformator, zet er maar 2 extra naast.
De tweede stap is het inzetten van de dwarsregeltransformator. Deze transformator kan de energiestromen over parallelle lijnen optimaal regelen en zo het totale elektriciteitstransport maximaliseren. We gebruiken meestal het woord dwarsregelaar, dat spreekt en schrijft wat gemakkelijker.
Een dwarsregelaar was vroeger zelden nodig. Dit stukje geschiedenis van Smit begint daarom pas in 1995, want toen werd pas de eerste dwarsregelaar geleverd. De ontwikkelingen gaan heel snel, mede gestimuleerd door de energietransitie. Een dwarsregelaar is eigenlijk een normale transformator met kern en wikkelingen, alleen de wikkelingen zijn anders geschakeld. Het lijkt simpel, maar dat heeft wel veel invloed op het elektrisch en mechanisch ontwerp. Het is een technische uitdaging om een dwarsregelaar te maken door de beperkingen van zowel de regelschakelaar als het transport.
Twee praktijksituaties in Nederland worden beschreven waarbij een dwarsregelaar de oplossing was. Dat was in het 150 kV net van EZH in Zuid-Holland en in de 400 kV verbindingen naar Duitsland bij Meeden in Groningen.  

De dwarsregelaar, wat is het?
De regeltransformator ( zie bijlage A ) is al langer bekend en wordt veel toegepast in het 10 kV net. Die maakt een regelbare spanning die in fase is met de netspanning ( zie fig A.3 en A.4 ). Er zijn twee mogelijkheden om dat te doen, namelijk een directe en een indirecte ( zie fig A.1 en A.2 ) Een dwarsregelaar is een transformator die een regelbare spanning maakt die 90 graden in fase verschoven is t.o.v.de netspanning. Er zijn 4 mogelijkheden om dat te doen, maar welke wordt het?
We laten alleen de twee keuzes zien van de dwarsregelaars die in Nederland staan. 

Het eenvoudigste is de asymmetrische directe regeling ( fig 1 ). Als de dwarsspanning (horizontale rode pijltje) groot is t.o.v. de netspanning, dan is het verschil in ingaande (rode verticale pijl) en uitgaande spanning (schuine zwarte pijl) te groot. Je kunt ook zeggen dat de fasehoek ( phase shift in het engels ) boven een bepaalde grens komt. Je moet dan overstappen op een symmetrische directe regeling, die heeft dat nadeel dan niet.
De dwarsspanning van de regelwikkeling is in fase met de hoogspanningswikkeling die tussen de ander fasen zit. Deze twee groen omcirkelde wikkelingen ( zie fig 1 ) zitten om dezelfde kernpoot, alleen je maakt “gewoon” andere verbindingen in de transformator. Je ziet dat de regelwikkeling met bijbehorende bekabeling en de regelschakelaar rechtstreeks aan het net “hangen” en dus daarvoor ook geschikt moeten zijn.

Lees meer

De bestorming van de Amerikaanse transformatormarkt door Smit

Auteur : Piet Waterhout – Hoofd Projecten in 1978

Er was eens …… een jonge Italiaan, die kort na W.O.II naar Zürich trok om aan de ETH te gaan studeren voor werktuigbouwkundig ingenieur. Hij ontmoette daar een Amerikaans meisje, dat gerelateerd was aan het befaamde geslacht Rockefeller. Na voltooien van zijn studie keerde hij met haar terug naar Italië, waar ze enige tijd later zouden trouwen. De jonge ingenieur trad in dienst bij GMT (Grande Motori di Triëst), een fabriek van grote dieselmotoren in Triëst, tegenwoordig onderdeel van Wärtsilä. Om zijn jonge vrouw een plezier te doen en om het avontuur trok het jonge paar na enige tijd naar de VS, waar hij vertegenwoordiger werd van GMT. Zijn naam: Giorgio Caciopuotti.
Er was eens …….. in het roerige Rusland net na W.O. I met de strijd tussen de bolsjewieken (de rooien) en de aanhangers van de tsaar (de witten) een jong “wit” echtpaar dat geen hoop op een goede afloop had en vluchtte met hun zoontje naar Japan. Het joch bleek een talenwonder, had het Japans snel onder de knie en zwierf op latere leeftijd over de wereld en verdiende al handel drijvend een goede boterham. Op zijn reizen door Zuid-Amerika had hij zijn moeilijk uit te spreken Russische naam veranderd in een naam met een wat lokalere kleur. Zijn naam werd toen: George Mendoza.

Het duurde niet lang voordat de twee boven geïntroduceerde personen elkaar hadden gevonden en samen een handelskantoor begonnen met Giorgio als president en George als vice-president onder de naam AMLICO: American Ligurian Company. Het kantoor handelde in alles wat los en vast zat, voornamelijk met import van kapitaalgoederen uit Italië. In hun portefeuille zat o.a.de vertegenwoordiging van een Italiaanse transformatoren fabriek Savigliano. Op een voor AMLICO ongelukkig moment werd deze fabriek overgenomen door de machtige Amerikaanse energiereus General Electric en toen was het afgelopen met de import van Italiaanse transformatoren: geen concurrentie van een dochter op de thuismarkt! AMLICO wilde haar opgedane ervaringen echter continueren en ging op zoek naar een andere leverancier van grote transformatoren.
Het was in deze tijd, dat de kersverse - gelet op het aantal dienstjaren - CEO van SMIT Transformatoren - drs. Ruud Nieuwenhuis - zich aan het oriënteren was om de afzet van “droge” transformatoren te vergroten. Deze apparaten werden in de fabriek van SMIT in Ede gefabriceerd en hadden in tegenstelling tot de gewone transformatoren geen olie of andere vloeistof als koel- en isolatiemiddel. De beide wikkelingen werden gegoten in giethars en de markt voor deze transformatoren met hun specifieke kenmerken was klein en hun prijs relatief hoog.
Tijdens een reis door de VS om het product te promoten kwam Ruud in contact met AMLICO, die hem de vraag voorlegde of SMIT geïnteresseerd zou kunnen worden om via AMLICO de Amerikaanse markt te betreden. Om ons op weg te helpen gaven de heren Ruud een dik boek mee, opdat wij ons een beeld konden vormen van die Amerikaanse markt.
Als gevolg van de op instignatie van Ruud uitgevoerde grote reorganisatie van enige jaren geleden, was o.a. de afd. Constructie opgeheven en was ik belast met de leiding van de afdeling Projecten. Deze afdeling fungeerde als schakel tussen afdeling Verkoop en de afdelingen Berekening, Constructie en Bedrijf. (Ik zei altijd, dat wij de wensen van de klant vertaalden naar andere afdelingen van het bedrijf). Op zekere dag kreeg ik een telefoontje of ik langs wilde komen bij Ruud. Hij vertelden mij over zijn recente bezoek aan de VS en het verzoek van AMLICO. Hij overhandigde mij het BOEK en verzocht mij om het te bestuderen en te onderzoeken of wij met enig succes op de Amerikaanse markt zouden kunnen opereren.

Het BOEK bleek een opsomming te zijn van alle Amerikaanse energiebedrijven, die één of meer transformatoren van groot vermogen en hoge spanning in bedrijf hadden (vandaag de dag vind je die informatie op Internet!). Het was zeer interessante lectuur en na enig rekenwerk was mijn conclusie, dat met maar 1% van deze markt in handen onze omzet in grote transformatoren tenminste zou verdubbelen. Over het prijsniveau was helaas geen informatie te vinden, maar daar konden we op een andere manier achter komen. 

Lees meer

Shunt spoelen – verleden, heden en toekomst

Hoe houd ik spanning uit het stopcontact stabiel? Als hij te hoog is branden de lampen door of worden de zonnepanelen afgeschakeld. Als hij te laag is loopt het motortje van de ventilator niet aan en kan zelfs doorbranden. Er is dus een bovengrens en een ondergrens van de spanning.

Dat is niet alleen thuis bij het stopcontact, maar ook elders in het elektriciteitsnet. De spanning moet stabiel zijn onder allerlei omstandigheden, wel of geen zon op de zonnepanelen, wel of geen wind bij de windmolen, wel of geen koude winterdag. Een oplossing is het gebruik van shuntspoelen. Deze oplossing was al bekend en werd “vroeger” af en toe toegepast.

De energietransitie maakt een veelvuldige toepassing echter noodzakelijk. Het ontwerp, de constructie, de fabricage en de beproeving van een shuntspoel vereisen dezelfde vaardigheden als bij een transformator. Smit Transformatoren is zich intensiever op dit marktsegment gaan richten. Er is nu een redelijke omzet van shuntspoelen, alhoewel in omvang wel geringer dan van transformatoren.  De elektriciteitsbedrijven doen daarmee een aanzienlijke investering voor een betrouwbaar en stabiel elektriciteitsnet. 

Waarom zijn er eigenlijk shuntspoelen? 

De waarde van de spanning in het hoogspanningsnet moet dus binnen zekere grenzen blijven. Niet te laag en niet te hoog. Vroeger was de spanning te regelen door de bekrachtiging van de generator in de elektriciteitscentrale te variëren. Dat was gemakkelijk, want die centrales waren ook nog eens netjes verspreid over het land.

De spanning aan het begin van een lange lijn kan heel anders zijn dan aan het einde en kan dus buiten zijn toegestane grenzen komen. Een laag energietransport resulteert in een hogere spanning aan het eind van de lijn,  ook wel “Ferranti effect” genoemd. Dit is voor het eerst vastgesteld in 1887 ( zie ook Wikipedia ).  Je kunt deze hoge spanning verlagen door een spoel aan te sluiten aan het eind van de hoogspanningslijn.  Zo’n spoel noemt men een shuntspoel of ook wel laadstroom compensatiespoel.   Shuntspoelen bestaan al heel lang, maar men had er niet zo veel behoefte aan. 

De veranderingen in het elektriciteitsnet, zoals vermogenstransporten over grote afstanden en de energietransitie met windparken op zee, maken de inzet van shuntspoelen noodzakelijk.  De netspanning blijft dan overal binnen de toegestane grenzen.

Je gebruikt een shuntspoel wel heel anders dan een transformator. Je schakelt de shuntspoel in als de belasting van het net laag is en dus de spanning aan het einde van de lijn hoog is, bijvoorbeeld ‘s nachts.  De shuntspoel werkt dus als een belasting die kan worden ingeschakeld als er weinig vraag naar energie is. De belasting wordt overdag weer hoog en dan schakel je de shuntspoel weer uit. De shuntspoel wordt dus veel in- en uitgeschakeld en krijgt dus daarom veel schakeloverspanningen te verduren. De spoel wordt ook afwisselend warm en koud. Dit intervalbedrijf is veel zwaarder dan het “rustige” continubedrijf van de transformator.

Lees meer

Wereldtentoonstelling Parijs 1900
Grote machinehal Wereldtentoonstelling Parijs 1900Van 15 april tot 19 november 1900 werd de Wereldtentoonstelling in Parijs gehouden. De "Exposition Universelle". Men vierde wat men had bereikt in de afgelopen jaren en nieuwe technische ontwikkelingen werden gepromoot door deze "Exposition Universelle" met 76000 exposanten op een gebied van 1.2 vierkante kilometer. Meer dan 50 miljoen bezoekers namen een kijkje bij deze tentoonstelling.

Nieuwe snufjes waren toen o.a. de roltrap en er werden voor het eerst filmopnamen gemaakt (met geluid) door Edison. In een prachtig decor van Jugendstil was ook een grote Nederlandse delegatie uitgenodigd. Twee Nederlandse fabrieken, Stork en Smit Slikkerveer  hadden een speciale opdracht meegekregen. Zij moesten samen het elektriciteitsgebouw op deze tentoonstelling verlichten. Stork leverde de stoommachine en Willem Smit de stoomdynamo en elektromotoren.

Willem Benjamin Smit in 1888Willem Smit kreeg met deze opdracht de erkenning voor zijn pionierswerk én men had nu ook internationaal aansluiting gekregen. Na afloop ontving hij de "Medaille D'or". In hetzelfde jaar werd hij ook nog Ridder in de orde van Oranje Nassau. Verder in dit artikel zie je een foto van deze oorkonde, samen met een unieke foto van de machines van Smit, die tevoorschijn kwamen tijdens het inscannen van een grote hoeveelheid oude glas negatieven uit het archief van Brush Ridderkerk. Place d'electricité (de grote machinehal)

De grote machines in de Place d'electricité. Hiertussen hebben de machines van Smit Slikkerveer en Stork gestaan. Hoogstwaarschijnlijk in het midden van bovenstaande foto, aan de linkerkant van de looproute. Vergelijk de foto van de machine van Smit Slikkerveer (direct onder het filmpje) met bovenstaande foto en kijk ook naar de vloer en het kleine vliegwiel. Volgens mij wel een aardige gelijkenis, maar ik kan het natuurlijk fout hebben.

Bron: www.flickr.com / Brooklyn museum (free of copyright).

Hieronder een filmpje gemaakt door Edison in 1900 op de Wereldtentoonstelling in Parijs. 

 

Klik op de zwarte balk hierboven voor bijpassende pianomuziek bij het filmfragment van Edison.....
Bron: Youtube.com

Dynamo Smit Slikkerveer
Smit Slikkerveer op de Wereldtentoonstelling in Parijs 1900, bron: archief Brush Ridderkerk.

Oorkonde Wereldtentoonstelling Parijs 1900 voor Willem Smit
De medaille die Willem Smit ontving voor zijn bijdrage voor de wereldtentoonstelling in Parijs (1900).

alt alt
Een gedeelte van een groot artikel in het Algemeen Handelsblad over de belangrijkste bedrijven van Nederland die in 1900 uitgezonden worden naar de Wereldtentoonstelling in Parijs (18-12-1896)

Wereldtentoonstelling 1900
De grote machine hal Wereldtentoonstelling Parijs 1900, Bron: www.flickr.com / Brooklyn museum (free of copyright).

Wereldtentoonstelling 1900
12-01-1899 Algemeen Handelsblad

Place d'électricité 1900
Place d'électricité 1900, www.flickr.com / Brooklyn museum (free of copyright).

Opbouw Wereldtentoonstelling Parijs 1900 Opbouw Wereldtentoonstelling Parijs 1900

De grote machinehal "Place d'électricité" wordt opgebouwd (1900)

alt alt
Links: drukte bij de opening van de Wereldtentoonstelling in Parijs , rechts: drukte bij de Eiffeltoren met op de achtergrond de gebouwen van de Wereldtentoonstelling. Bron: www.flickr.com / Brooklyn museum (free of copyright).

Wereldtentoonstelling 1900
De grote machinehal - Place d'electricité - (de Franse afdeling) Wereldtentoonstelling Parijs 1900.Bron: www.flickr.com / Brooklyn museum (free of copyright).

Smit Slikkerveer op de Wereldtentoonstelling van Parijs 1900
Smit Slikkerveer op de Wereldtentoonstelling Parijs 1900 , fotonummer: 3468 fotocollectie Brush Ridderkerk

Rechts naast de grote dynamo op bovenstaande foto zien we een transformator. Op deze Wereldtentoonstelling presenteerde Willem Benjamin Smit voor het eerst zijn zelf ontwikkelde transformator(40 kVA).

Wereldtentoonstelling 1900
Een 40 kVA transformator (1899/1900) Bron: Brush Ridderkerk.

Wereldtentoonstelling 1900

Wereldtentoonstelling 1900

Een stuk uit het Algemeen Handelsblad (09-07-1900) over de Wereldtentoonstelling in Parijs waarbij de machines van Stork mooi beschreven worden. Men vergeet echter te vermelden dat een groot deel van de machines van Smit Slikkerveer is. Dit wordt gerectificeerd in onderstaand vervolg artikel. De stoommachine is van Stork, de stoomdynamo en de motoren allemaal van Smit Slikkerveer. Stork en Smit Slikkerveer mochten namelijk samen de machinehal (Place d'électricité) voorzien van elektriciteit t.b.v. aandrijving en verlichting.

Wereldtentoonstelling 1900

Algemeen Handelsblad 12-07-1900

Palace of Electricity
Dit is het "Place d'electricité." In bovenstaand artikel werd dit "het waterkasteel"genoemd die door Stork en Smit werd voorzien van elektrisch licht.
 

alt alt
De grote machinehal Wereldtentoonstelling Parijs 1900,
Links: buitenzicht, rechts de machinehal. Bron: www.flickr.com / Brooklyn museum (free of copyright).

alt alt
Kaarten van de Wereldtentoonstelling in Parijs. Klik op de foto om deze te vergroten.

Wereldtentoonstelling
Plattegrond van de Wereldtentoonstelling in Parijs (1900).

Grote machinehal Grote machinehal
De grote machinehal tijdens de Wereldtentoonstelling in Parijs, bron: www.flickr.com / Brooklyn museum (free of copyright).

Smit Slikkerveer ontving na afloop van deze Wereldtentoonstelling de "Medaille D'or".

Wereldtentoonstelling
Fotonummer 6096, Archief Brush Ridderkerk

Parijs Wereldtentoonstelling 1900
Hierboven een fantastische foto met op de achtergrond de gebouwen van de Wereldtentoonstelling, bron: www.flickr.com / Brooklyn museum (free of copyright/ Wikepedia, Archief Brush HMA Ridderkerk.
Voor meer informatie over de Wereldtentoonstelling in Parijs klik hier.

Reacties mogelijk gemaakt door CComment

Historische nieuwsflits

"Groote" transformator voor Scheveningen (1927)

In Delpher kwam ik deze foto tegen van een transformator van Smit uit 1927. Dit is waarschijnlijk een 6000 kVA Transformator van het fabricaat Smit met een overzet verhouding van 25 / 10 kV,De Westduinweg liep door een gebied dat zich sterk ontwikkelde, tweede visserijhaven en woningbouw ter vervanging van de oude (vissers)huizen rond de Keijzerstaat. De centrale in Den Haag (nabij het Constante Rebecque plein) leverde energie op 25 kV niveau. Waarschijnlijk was deze transformator met een transportkabel op die centrale aangesloten. Het 10 kV distributienet in het Scheveningse havengebied werd uit deze transformator gevoed. Het is niet ondenkbaar dat het transport nog op 10 kV en de distributie nog op 3 kV plaats vond. De literatuur geeft hier geen eenduidig uitsluitsel over. 

Maar ongeacht de spanning met recht een voor die tijd "groote" transformator.

Bron: NRC 11-12-1927

Interieur van de centrale in Den Haag in 1905. Bron: EON.

De centrale in Den Haag rond 1912. Bron: EON. 

Schrijf reactie (0 Reacties)

A. Hoogveld aan de Kotterbank bij Smit Transformatoren (1953)

Dhr. A. Hoogveld stuurde mij deze prachtige foto uit 1953. Als oud-medewerker van Smit 1943-1954 stond ik aan de grote kotterbank in de afdeling MB, Mechanische Bewerking. 

Kotterbank

Schrijf reactie (0 Reacties)

Bedrijfsfilm videobox

Cloud tag

Laatste artikelen

Laatste reacties

      LEES MEER

Wie is online

We hebben 138 gasten en geen leden online

Statistieken

Aantal bekeken pagina's
10234183
DMC Firewall is a Joomla Security extension!